Photocatalytic Properties of Immobilised Graphitic Carbon Nitride on the Alumina Substrate

نویسندگان

چکیده

Textile industries significantly impact the contamination of wastewater. Conventional wastewater treatment methods consider most common pollutants; however, they are very expensive and commonly produce toxic by-products. In scientific community, advanced oxidation processes appear to be appealing, a majority published work considers heterogeneous photocatalysis for degradation various chemicals. For convenience, reaction is performed directly in water environment. this work, metal-free graphitic carbon nitride (g-C3N4) was prepared through simple thermal method using urea as precursor. Prepared g-C3N4 deposited on surface alumina ceramic ring by dip-coating ethylene glycol binder. The ring, substrate, slip casting method. Photocatalytic properties immobilised were used methylene blue model pollutant under simulated solar light irradiation. photocatalyst characterised XRD, FTIR, UV-Vis DRS, TGA, BET SEM/EDX analyses. photocatalytic MB from an aqueous solution found increase with increasing irradiation time. It that convenient largescale environmental applications because whole setup cheap, nontoxic, easy operate offers reusability high removal rate after three consecutive cycles.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ammonia-induced robust photocatalytic hydrogen evolution of graphitic carbon nitride.

We report a new and effective method to prepare high activity graphitic carbon nitride (g-C3N4) by a simple ammonia etching treatment. The obtained g-C3N4 displays a high BET surface area and enhanced electron/hole separation efficiency. The hydrogen evolution rates improved from 52 μmol h(-1) to 316.7 μmol h(-1) under visible light.

متن کامل

A density functional study on the mechanical properties of metal-free two-dimensional polymer graphitic Carbon-Nitride

Successful synthesis of the stable metal-free two-dimensional polymer graphitic carbon-nitride with remarkable properties has made it as one of the most promising nanostructures in many novel nanodevices, especially photocatalytic ones. Understanding the mechanical properties of nanostructures is of crucial importance. Thus, this study employs density functional theory (DFT) to obtain the mecha...

متن کامل

Mechanism of Photocatalytic Water Splitting with Graphitic Carbon Nitride: Photochemistry of the Heptazine-Water Complex.

Impressive progress has recently been achieved in photocatalytic hydrogen evolution with polymeric carbon nitride materials consisting of heptazine building blocks. However, the fundamental mechanistic principles of the catalytic cycle are as yet poorly understood. Here, we provide first-principles computational evidence that water splitting with heptazine-based materials can be understood as a...

متن کامل

A density functional study on the mechanical properties of metal-free two-dimensional polymer graphitic Carbon-Nitride

Successful synthesis of the stable metal-free two-dimensional polymer graphitic carbon-nitride with remarkable properties has made it as one of the most promising nanostructures in many novel nanodevices, especially photocatalytic ones. Understanding the mechanical properties of nanostructures is of crucial importance. Thus, this study employs density functional theory (DFT) to obtain the mecha...

متن کامل

Graphitic Carbon Nitride/Reduced Graphene Oxide/Silver Oxide Nanostructures with Enhanced Photocatalytic Activity in Visible Light

Visible light active graphitic carbon nitride/reduced graphene oxide/silver oxide nanocomposites with a p-n heterojunction structure were synthesized by chemical deposition methods. Prepared samples were characterized by different physico-chemical technics such as XRD, FTIR, SEM, TEM and DRS. Photocatalytic activity investigated by analyzing the Acid blue 92 (AB92) concentration during the time...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2022

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app12199704